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Magnetization of a current-carrying superconducting Corbino disk
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We calculate the hysteretic response of a current-carrying type-II superconducting Corbino disk subjected to
a perpendicular applied magnetic field. For a disk containing remanent flux in zero field, our theory predicts
that applying a radial transport current or raising the temperature at fixed current will cause the magnetic flux
to be expelled from the sample. For a disk initially containing no magnetic flux but carrying a radial current,
we find that as a perpendicular magnetic field is applied, magnetic-flux penetration occurs in three stages:~i!
the magnetic flux gradually penetrates from the edges of the disk until an instability occurs,~ii ! there is a rapid
inflow of magnetic flux into the disk’s central region, which becomes resistive because the radial current
density there exceeds the depinning critical current densityJc , and~iii ! magnetic flux continues to enter the
disk, while persistent azimuthal currents flow in an outer annular region where the net current density is equal
to Jc . We also calculate the behavior of a current-carrying Corbino disk subjected to an ac magnetic field.
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I. INTRODUCTION

The properties of a current-carrying type-II supercondu
ing Corbino disk, in which electrical currentI fed into the
center flows outward through the disk and enters a circu
ferential electrode at the outer radiusR as shown in Fig. 1,
are of considerable interest. For example, when the dis
subject to a uniform perpendicular applied magnetic fi

Ba5Baẑ and the resulting vortex array undergoes stea
state flux flow throughout the entire specimen, the result
electric field EÄB3v has a radial componentEr but no
azimuthal component. The vortex velocityv then has only an
azimuthal componentvf52Er /Bz , and the vortices flow in
concentric circular trajectories. Recent experiments by Lo
et al.1,2 in untwinned crystals of YBa2Cu3O72d showed that
the azimuthal component of the vortex velocity varies
vf}1/r in the vortex liquid state, when the Lorentz forc
causes successive rings of vortices to shear relative to
another as in a liquid, and asvf}r in the vortex-solid state
when the shear strength of the vortex solid is so strong
the vortex crystal rotates as a whole. However, these aut
found that there is a temperature regime of plastic motion
the vortex solid for whichvf has a behavior intermediat
betweenvf}1/r andvf}r.

Other experiments in Bi2Sr2CaCu2O8 and 2H-NbSe2 crys-
tals also have revealed that flux flow in the Corbino-d
geometry, where vortices flow in concentric circles, can
quite different from that in the strip geometry, where vortic
enter from one side of the sample and exit on the other3–6

Rycroft et al.3,4 used both Corbino and strip geometries
show that in the latter case, vortex motion in Bi2Sr2CaCu2O8
crystals can be strongly affected by edge-pinning effects~the
Bean-Livingston barrier, the geometrical barrier, or a com
nation of the two!. Eltsevet al.5 used the Corbino-disk ge
ometry to reveal that the vortex-liquid state
Bi2Sr2CaCu2O8 crystals is subdivided into two separa
phases with different degrees of transverse vortex corr
0163-1829/2001/64~18!/184507~10!/$20.00 64 1845
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tion. Paltiel et al.6 also used the Corbino geometry to fin
that the ordered Bragg glass in vortex arrays in 2H-NbS2
crystals becomes unstable with respect to disorder at b
high and low magnetic fields, resulting in a reentra
disorder-driven transition line.

In the present paper, we consider a current-carry
type-II superconducting Corbino disk and calculate its h
teretic response to a perpendicular applied magnetic fi
Implicit in this approach is the assumption of a relative
weak vortex-lattice shear strength, such that plastic vor
motion occurs whenever the magnitude of the local Lore
force density exceeds the maximum pinning force dens
The organization of this paper is as follows. In Sec. II, w
consider a disk containing remanent flux in zero appl
magnetic field and show how the trapped flux is gradua
expelled as a radial current is applied. In Sec. III, we co
sider a zero-field-cooled disk carrying a radial current a
show how magnetic flux penetrates into the disk as a perp
dicular magnetic field is applied. To treat this problem,

FIG. 1. Sketch of the Corbino disk. CurrentI flows downward
along the center lead, enters the disk at the contact shown, fl
outward, and returns upward through a coaxial current return
radiusR. This current distribution produces only an azimuthal ma
netic fieldBf(r)52m0I /2pr above the disk for radial coordinat
r,R.
©2001 The American Physical Society07-1
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ALI A. BABAEI BROJENY AND JOHN R. CLEM PHYSICAL REVIEW B64 184507
which one must account for Meissner screening curre
flowing in the inner regions of the disk, we have adopted
integral-equation approach due to Shantsevet al.7,8 We also
calculate the magnetization for initial flux penetration.
Sec. IV, we calculate the sequence of current-density
flux-density profiles in a current-carrying Corbino disk wh
a perpendicular ac magnetic field is applied. We also ca
late the corresponding magnetization hysteresis loops.
summarize our results in Sec. V.

II. CURRENT-INDUCED RELAXATION
OF TRAPPED FLUX PROFILES STARTING

FROM THE REMANENT STATE

Let us consider a thin~thicknessd!R) type-II supercon-
ducting disk that has been cooled into the superconduc
state in the presence of a large axial applied magnetic fi
Ba5Baẑ. We characterize bulk pinning in the superco
ductor by a magnetic-field-independent critical current d
sity Jc , such that when the applied magnetic field is reduc
to zero, a critical-state magnetic-flux distribution, genera
by an azimuthal current density~averaged over the thicknes
of the disk! J5Jff̂, whereJf5Jc , is trapped in the disk
The remanent magnetic fieldB can be calculated using th
Biot-Savart law. In the planez50 through the center of the
disk, thez component ofB is given to good approximation
by9,10

Bz~r,0!/Bd5
1

pJc
E

0

R

G~r,r8!Jf~r8!dr8, ~1!

where

G~r,r8!5K@k~r,r8!#/~r1r8!2E@k~r,r8!#/~r2r8!,
~2!

k~r,r8!52~rr8!1/2/~r1r8!, ~3!

K andE are complete elliptic integrals of the first and seco
kinds, respectively, of modulusk, andBd5m0Hd5m0Jcd/2.
Here,Hd5Jcd/2 is a characteristic flux-penetration field fo
disk geometry; throughout this paper we shall make use
the corresponding flux densityBd to normalize flux densities

We next suppose that a currentI is fed into the sample a
shown in Fig. 1. The average radial current density is

Jr5I /2prd, ~4!

wherer is the radial coordinate andd is the thickness of the
disk. ~The central lead and its contact to the disk have fin
radii, thus removing the divergence ofJr as r→0.! The
current produces a self-field at the top surface of the d
Bf52m0I /2pr. Application of the currentI upsets the
critical-state force balance, because the net current densi
the disk is

J~r!5Jf~r!f̂1Jr~r!r̂, ~5!

whereJf depends upon the trapped flux distributionBz , and
Jr depends only upon the applied current@Eq. ~4!#. The Lor-
entz force per unit length of vortex is
18450
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fÄJ3f0ẑ5~Jfr̂2Jrf̂ !f0 , ~6!

and its magnitude is

f 5Jf05~Jf
2 1Jr

2!1/2f0 , ~7!

wheref05h/2e is the superconducting flux quantum. Sin
initially Jf5Jc , the magnitude of the Lorentz force per un
lengthf exceeds the maximum pinning force per unit leng

f p5Jcf0 , ~8!

and hence the vortices must move in the direction of
Lorentz force. From Eq.~6!, we see that the motion has bo
an outward radial component and an azimuthal compon
While azimuthal vortex motion does not change the m
netic flux densityBz , the radial motion does, and this resu
in expulsion of magnetic flux from the disk.

We can apply critical-state theory to determine the res
ing flux-density profilesBz . We first note that the resulting
vortex distribution depends upon the radial coordinater. Let
us definea as the radius at whichJr5Jc ; Eq. ~4! yields

a5I /2pJcd. ~9!

For r,a, the Lorentz force always exceeds the pinni
force, the vortices are constantly in motion, and the reg
r,a is resistive. In steady state, for whichdB/dt50, Fara-
day’s law requires that the azimuthal component of the e
tric field Ef must be zero. We consider here the case of z
Hall angle, in whichE andJ are parallel, such that we als
have

Jf~r!50, r,a. ~10!

For r.a, the final steady-state flux distribution is that fo
which the magnitude of the Lorentz force per unit length h
been reduced to the value of the pinning force per unit len
( f 5 f p). This condition is the same@see Eqs.~7! and~8!# as
the requirement thatJ5Jc or

Jf~r!5Jcf~r![~Jc
22Jr

2!1/25Jc~12a2/r2!1/2, a,r,R,
~11!

whereR is the radius of the disk. We shall refer toJcf(r) as
the azimuthal critical current density. The resulting magne
flux densityB in the presence of the currentI can be com-
puted by substituting the current densityJf(r) from Eqs.
~10! and ~11! into the Biot-Savart law. In the plane of th
film, Bz(r,0) can be calculated from Eq.~1!. Out of the
plane of the film,Bz(r,z) and Br(r,z) can be calculated
from11

Bz~r,z!/Bd5~1/pJc!E
0

R

Gz~r,z;r8!Jf~r8!dr8, ~12!

Br~r,z!/Bd5~1/pJc!E
0

R

Gr~r,z;r8!Jf~r8!dr8, ~13!

where
7-2
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Gz~r,z;r8!5
1

A~r1r8!21z2 H K@k~r,z;r8!#

2
r21z22r82

~r2r8!21z2
E@k~r,z;r8!#J , ~14!

Gr~r,z;r8!5
z

rA~r1r8!21z2 H 2K@k~r,z;r8!#

1
r21z21r82

~r2r8!21z2
E@k~r,z;r8!#J , ~15!

k~r,z;r8!52~r8r!1/2/A~r1r8!21z2; ~16!

K andE are complete elliptic integrals with modulusk, as in
Eq. ~2!.

Figure 2~a! shows a sequence of normalized curre
density profilesJf(r)/Jc for a increasing from zero to 0.5R.
Alternatively, since the relation Br(r,z501)/Bd
5Jf(r)/Jc follows from Ampère’s law and the symmetry
property Br(r,z502)52Br(r,z501), we may regard
Fig. 2~a! as a sequence of normalized radial magnetic fl
density profiles just above the surface. As can be seen f
Eq. ~9!, a can be increased experimentally by increasing
transport currentI or increasing the temperature~and thereby
decreasingJc). Figure 2~b! shows the corresponding se
quence of normalized flux-density profilesBz(r,0). The flux
density at the origin is

Bz~0,0!/Bd5 cosh21~R/a!2~12a2/R2!1/2. ~17!

Note that all the trapped magnetic flux is expelled whena
5R.

It is possible that measurements ofBr andBz cannot be
made exactly at the top surface of the disk, but that they
be made~perhaps with horizontally and vertically mounte
Hall probes! at a finite distancez above the disk’s midplane
As an example of how one may analyze the fields in suc
case, Figs. 3~a! and 3~b! show profiles ofBr and Bz at a
heightz50.1R, calculated numerically with the help of Eq
~13! and ~12!. Although we concentrate in the remainder
this paper on the behavior of the azimuthal current den
Jf(r) and the perpendicular component of the magnetic fl
densityBz(r,0) in the planez50, corresponding values o
Br(r,z) and Bz(r,z) at arbitrary heightsz always can be
obtained from Eqs.~13! and ~12!, respectively.

The magnetization of the disk is12

Mz5E
0

R

dr~r/R!2Jf~r!, ~18!

such that for gradually increasing values ofa,

Mz /Ms5~12a2/R2!3/2, ~19!

where

Ms5JcR/3 ~20!
18450
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is the saturation magnetization9,10,13corresponding to the re
sult obtained from Eq.~18! when a50 and Jf(r)5Jc .
We shall useMs later in this paper for normalizing the mag
netization.

III. BEHAVIOR UPON INITIAL PENETRATION OF
MAGNETIC FLUX INTO A CURRENT-CARRYING

CORBINO DISK

Consider a thin type-II superconducting disk that has b
cooled into the superconducting state in the absence of
a transport current and a perpendicular applied magn
field. Suppose that a currentI is now fed into the sample a

FIG. 2. ~a! Azimuthal current density in the remanent sta
Jf(r) @Eq. ~11!#, normalized to the critical current densityJc , vs
r/R for increasing radial currentI, parametrized bya5I /2pJcd
@Eq. ~9!#, for a/R5 ~a! 0, ~b! 0.1, ~c! 0.2, ~d! 0.3, ~e! 0.4, and~f!
0.5. ~b! Corresponding remanent-state flux densityBz(r,0) in the
plane of the Corbino disk, calculated from Eqs.~1! and ~11! and
normalized toBd5m0Hd5m0Jcd/2, vs r/R for the same radial
currentsI as above.
7-3
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ALI A. BABAEI BROJENY AND JOHN R. CLEM PHYSICAL REVIEW B64 184507
shown in Fig. 1. The average radial current density isJr

5I /2prd, wherer is the radial coordinate andd is the thick-
ness of the disk. We suppose that the self-field at the
surface of the disk,Bf52m0I /2pr, has magnitude less tha
m0Hc1, such that the superconductor remains in the vort
free Meissner state; to satisfy this condition, the radiusr c of
the central lead and its contact to the disk must obeyr c
.I /2pHc1. We shall see that when a perpendicular magn
field Ba5Baẑ is applied, magnetic flux penetrates into t
disk in three stages.

We use the Bean critical-state model, in which the type
superconductor is characterized by a field-independent c
cal current densityJc . In the absence of a radial current, th
penetration of magnetic flux into the sample, expressed
terms of profiles of the magnetic flux density in the di

FIG. 3. ~a! Radial magnetic-flux density in the remanent state
height 0.1R above the disk’s surface,Br(r,z50.1R), calculated
from Eqs.~11! and~13!, and~b! corresponding remanent-state flu
densityBz(r,z50.1R), calculated from Eqs.~11! and~12!, vs r/R
for the same radial currentsI as in Fig. 2. BothBr and Bz are
normalized toBd5m0Hd5m0Jcd/2.
18450
p

-

ic

I
ti-

in

Bz(r,0) as a function ofBa , can be calculated as in Ref
9,13 and 10. In the present of a radial current, however,
calculation becomes more difficult because the azimu
critical current densityJcf(r) @Eq. ~11!# depends upon the
radial coordinater in that region of the sample where ma
netic flux has penetrated. Moreover, the inner regions of
disk where magnetic flux has not yet penetrated@i.e., where
Bz(r,0)50] carry a Meissner-screening currentJf(r),
which needs to be calculated separately. We assume th
these regions the magnitude of the tangential magnetic fi
at the top surface remains less thanm0Hc1, such that they
remain in the vortex-free Meissner state. To carry out cal
lations accounting for the central Meissner-screening
gions, we have adapted an approach recently introduce
Shantsevet al.7,8

An integral-equation method for calculating the penet
tion of magnetic flux into an infinitely long strip characte
ized by an arbitrary critical current densityJc(B) was re-
ported by McDonald and Clem in Ref. 14. Shantsevet al.7

found a similar method for calculating the penetration
magnetic flux into a disk characterized by an arbitrary cr
cal current densityJc(B), and in Ref. 8 they applied this
method to calculate the magnetization and ac susceptib
for several models for theB dependence ofJc(B). In contrast
to the results of Refs. 9,13 and 10, in which the Bean mo
(Jc independent ofB) was assumed, Shantsevet al. found
suppressed values ofJ at the edges of the disk, whereB is
large,7 and they found that hysteretic magnetization loo
narrowed at large values of the applied field.8 The particular
feature of the approach of Shantsevet al. that we shall apply
in solving the Corbino-disk problem is its ability to accou
for the dependence of the azimuthal critical current den
Jcf(r) upon the radial coordinater.

We assume that for a given applied magnetic fieldBa the
vortices penetrate from the disk’s edge, where strong dem
netizing effects cause the local magnetic field to exceedHc1.
We further assume that bulk pinning dominates over ed
pinning effects. The vortices penetrate to the radiusb, called
the flux-front radius, which initially is a decreasing functio
of Ba . The local magnetic flux density and the current de
sity are given, respectively, by7

Bz~r,0!5E
b

min(r,R)

BM~r,r8!W~r8,Ba!dr8, ~21!

Jf~r!5E
max(b,r)

R

JM~r,r8!W~r8,Ba!dr8, ~22!

where BM(r,r8) is the z component of the Meissner-sta
flux density vs r in the plane of a disk of radiusr8
@BM(r,r8)50 for r,r8] in an applied fieldBa , JM(r,r8)
is the corresponding Meissner-state current density
r,15,9,13,10 and W(r,Ba) is a weight function. Since both
Bz(r,0)→Ba and BM(r,r8)→Ba at r→`, we have the
normalization condition

E
b

R

W~r,Ba!dr51. ~23!

t

7-4
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From Refs. 7 and 8, we obtain

W~r,Ba!52S Bd

Ba
D d

drEr

RAr822a2

r822r2

dr8

r8

5S Bd

Ba
D S a

r2D F r

a
AR22a2

R22r2

2cosh21S r

R
AR22a2

r22a2 D G , ~24!

whereBd5m0Jcd/2. Substitution of Eq.~24! into Eq. ~23!
yields an equation determining the flux-front radiusb as a
function of the applied fieldBa :

Ba

Bd
5tanh21AR22b2

R22a2
2

a

b
tanh21S a

b
AR22b2

R22a2D .

~25!

In the absence of any transport current (a50), Eq.~25! can
be reexpressed as

sech~Ba /Bd!5b/R, ~26!

which is shown as curvea in Fig. 4. The other solid curves in
Fig. 4 showb vs Ba for nonzero transport currentI param-

FIG. 4. Flux-front radiusb, normalized to the disk radiusR, vs
applied magnetic inductionBa , calculated from Eq.~25! and nor-
malized toBd5m0Hd5m0Jcd/2, for first penetration of magnetic
flux and fixed values ofa/R5I /2pRJcd5 ~a! 0, ~b! 0.1,~c! 0.2,~d!
0.3, ~e! 0.4, and~f! 0.5 ~solid curves!. Large dots identify values of
the maximum applied magnetic inductionBam @Eq. ~27!# and cor-
responding flux-front radiusbm @Eq. ~28!#, whereBam is the maxi-
mum value ofBa for which magnetic flux penetrates gradually int
the sample for a given value ofa. The dotted curve shows the
trajectory ofbm vs Bam @Eq. ~29!#. The portions of the solid curves
with positive slope~below the large dots and the dotted curve! are
unstable, experimentally inaccessible solutions of Eq.~25! for a
,b,bm .
18450
etrized by a/R5I /2pRJcd. Note that for nonzeroa, the
curves ofb vs Ba have infinite slope at the points marke
with large dots. In other words, with increasing applied fie
Ba , the penetration of magnetic flux proceeds by means
gradually shrinking flux-front radiusb only up to a maxi-
mum field Bam , which depends upon the transport curre
By differentiation of Eq.~25!, we find for a givena that this
maximum field is

Bam /Bd5tanh21@11~b221!~a/R!2#21/2

2@11~b221!~a/R!2#1/2, ~27!

whereb51.199 679 is the solution ofbtanhb51. The cor-
responding flux-front radius is

bm5ba@11~b221!~a/R!2#21/2. ~28!

The dotted curve connecting the large dots in Fig. 4 (Bam vs
bm) is obtained by eliminatinga between Eqs.~27! and~28!:

Bam /Bd5tanh21@12~12b22!~bm /R!2#1/2

2@12~12b22!~bm /R!2#21/2. ~29!

The portions of the curves ofb vs Ba with positive slope in
Fig. 4 for a,b,bm are unstable, experimentally inacce
sible solutions of Eq.~25!.

During the initial penetration of magnetic flux into th
Corbino disk in the presence of a radial transport currenI
and an applied magnetic fieldBa , the normalized magnetic
flux density Bz(r,0;b)/Bd in the plane of the disk (z50)
and the normalized azimuthal current densityJf(r;b)/Jc are
as follows:7,8

Bz~r,0;b!/Bd5Ba /Bd1~1/pJc!E
0

R

G~r,r8!Jf~r8;b!dr8,

~30!

Jf~r;b!

Jc
52

2

pEb

R rAb22r2

r8~r822r2!
Ar822a2

r822b2
dr8, r,b,

~31!

52A12a2/r2, b,r,R, ~32!

whereG(r,r8) is defined in Eq.~2!.
AlthoughBz(r,0;b) has to be evaluated numerically from

Eq. ~30!, Jf(r;b) can be obtained analytically from Eqs
~31! and ~32!:
7-5
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Jf~r;b!

Jc
52

2

pr Fa

b
Ab22r2tanh21S a

b
AR22b2

R22a2D
2Aa22r2tanh21A~R22b2!~a22r2!

~R22a2!~b22r2!
G

~0<r<a<b!, ~33!

52
2

pr Fa

b
Ab22r2tanh21S a

b
AR22b2

R22a2D
1Ar22a2tan21A~R22b2!~r22a2!

~R22a2!~b22r2!
G

~a<r<b! ~34!

52
Ar22a2

r
~b<r<R!. ~35!

Shown in Fig. 5~a! is a plot of uJf(r;b)u/Jc @Eqs. ~33!,
~34!, and~35!# vs r/R for fixed a/R50.2 and a sequence o
increasing applied fieldsBa @Eq. ~25!# and decreasing flux
front radii b: (Ba /Bd ,b/R)5 ~a! ~0.674, 0.800!, ~b! ~1.053,
0.600!, ~c! ~1.446, 0.400!, and ~d! (Bam /Bd ,bm /R)
5~1.710, 0.238!. Figure 5~b! shows a plot of the correspond
ing flux-density profilesBz(r,0;b)/Bd vs r/R, calculated nu-
merically by combining Eqs.~30!, ~33!, ~34!, and ~35!. A
comparison of Fig. 5~a! with Figs. 3 and 4 of Shantse
et al.,7 who account for theB dependence ofJc , reveals
some important differences. In the present treatment, ba
upon the Bean model (Jc independent ofB), the radial trans-
port current suppresses the azimuthal current density@see Eq.
~11!# near the center of the disk, where the radial curr
density is largest. Shantsevet al.,7 in examining cases fo
which Jc(B) is a decreasing function ofB, found that the
azimuthal current density is enhanced at the flux front, wh
B is small, and suppressed near the edge of the disk, wheB
is large.

From Fig. 4 we have seen that for fixed currentI ~fixed a)
and increasing applied fieldBa , the initial penetration of
magnetic flux into a current-carrying Corbino disk begi
with a gradually shrinking flux-front radiusb. Typical
current-density and flux-density profiles were shown in Fi
5~a! and 5~b!. Vortices are present in the regionb,r,R,
where the magnitude of the azimuthal current densityJf(r)
is equal to the effective azimuthal critical current dens
Jcf(r)5Jc(12a2/r2)1/2. No vortices are present in the re
gion r,b, which remains in the Meissner state and is th
capable of supporting a large screening supercurrent, g
in Eqs.~33! and~34!. Thisfirst stageof flux penetration ends
whenBa grows to the valueBam @Eq. ~27!# andb shrinks to
the valuebm @Eq. ~28!#. We now address the question
what happens during the second stage of flux penetra
which begins atBa5Bam .

Note from curvesa–c of Fig. 5~a! that the magnitude o
the screening current densityJf(r) drops rapidly below
Jcf(r) for r,b throughout the first stage of flux penetr
18450
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tion. This means that vortices at the flux-front radiusb are
stable whenBa,Bam ; i.e., any vortex with radial coordinate
r slightly less thanb remains pinned. However, as shown b
curve d in Fig. 5~a! and the dashed curve showingJcf(r),
whenBa5Bam , the curve ofJf(r) vs r becomes tangent to
Jcf(r) at r5bm . A vortex with radial coordinater slightly
less thanbm thus experiences an azimuthal current dens
Jf(r) of magnitude greater thanJcf(r). Since this leads to
an inward Lorentz force exceeding the pinning force, suc
vortex will be driven inward towards the center of the dis

From this we see that thesecond stageof flux penetration,
characterized by the sudden inflow of a finite amount
magnetic flux, is triggered by an instability that occurs wh
Ba5Bam . When the applied fieldBa slightly exceedsBam ,
vortices are pushed inside the critical flux-front radiusbm ,
and the azimuthal current densityJf , since it exceeds the
azimuthal critical current densityJcf(r), drives the vortices
towards the center of the disk. This generates a nega
azumuthal component of the electric field,Ef(r), which,
according to Faraday’s law, is accompanied by an increas

FIG. 5. ~a! Magnitude of the azimuthal current densi
uJf(r;b)u, normalized toJc , vs r/R during the first stage of flux
penetration fora/R50.2 and a sequence of increasing applied fie
Ba and decreasing flux-front radiib @Eq. ~25!#: (Ba /Bd ,b/R)5 ~a!
~0.674, 0.800!, ~b! ~1.053, 0.600!, ~c! ~1.446, 0.400!, and ~d!
(Bam /Bd ,bm /R)5 ~1.710, 0.238!. ~b! Corresponding flux-density
profilesBz(r,0;b)/Bd vs r/R, calculated from Eq.~30!.
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the z component of the magnetic flux in the interior of th
disk. The rapid, inward flow of vortices is initially uncon
trolled except via viscous drag forces and the correspond
flux-flow resistivity. As more and more vortices fill th
middle of the disk, the region 0,r,a becomes resistive; a
radial electric fieldEr is now generated, because vortic
with 0,r,a experience a radial current densityJr greater
than Jc ; these vortices eventually take up circular trajec
ries around the axis of the disk. Vortices continue to flow in
the central portion of the disk and to redistribute finally
such a way that the second stage of flux penetration is c
cluded when the azimuthal current densityJf takes on the
final distribution,

Jf~r!50, 0,r,a, ~36!

Jf~r!52Jcf~r!52Jc~12a2/r2!1/2, a,r,R.
~37!

The z andr components of the resulting magnetic field no
can be calculated as the superposition of~a! the uniform
applied magnetic fieldBa in thez direction and~b! the mag-
netic field calculated via the Biot-Savart law@Eqs.~12! and
~13!# from the azimuthal current densityJr(r)52Jcf(r) in
the regiona,r,R. There is a significant change in th
magnetic flux distributionBz(r,0) and a large increase o
magnetic flux inside the radiusbm resulting from this
second-stage flux entry. This can be seen by comparing c
d in Fig. 5~b! at the end of stage one with curvea in Fig. 6,
which representsBz(r,0) vs r at the end of stage 2 and th
beginning of stage 3. At the end of the second stage of
penetration, there remains a nonzero steady-state radial
tric field Er for r,a, where vortices are continuously drive
around the disk’s axis in circular trajectories, andEr50 for
r.a, where vortices are now pinned in the critical state. T
azimuthal component of the electric field,Ef , vanishes.

FIG. 6. Flux-density profilesBz(r,0)/Bd vs r/R during the third
stage of flux penetration, calculated from Eq.~30! for a/R50.2 but
with Jf taken from Eqs.~36! and ~37! for increasing applied mag
netic inductionBa5 ~a! Bam , ~b! 1.5Bam , ~c! 2.0Bam , and~d! 2.5
Bam , whereBam51.710Bd .
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A third stageof flux penetration occurs as the applie
field Ba is gradually increased aboveBam . Vortices are
nucleated at the outer radius of the sample and driven inw
by the induced azimuthal current density, whose magnit
is just aboveJcf(r). At each value ofBa , the magnetic flux
density can be calculated as the superposition of the unif
applied magnetic field and the field generated by the a
muthal current density in the regiona,r,R. A sequence of
profiles ofBz(r,0) vsr for increasing values ofBa is shown
in Fig. 6. As at the end of stage two, the sample interior
resistive; i.e., there is a steady-state radial electric fieldEr in
the regionr,a, where the radial current densityJr exceeds
Jc .

The magnetic moment of a disk carrying a current w
only an azimuthal current densityJf has only az component,

mz5
1

2E rJfd3r. ~38!

We define the corresponding magnetization asMz5mz /V,
whereV5pR2d is the sample volume. We wish to calcula
the initial magnetization when a superconducting Corb
disk in the Meissner state is carrying a radial currentI and a
perpendicular magnetic fieldBa5Baẑ is applied, as above
Substitution of Eqs.~33!, ~34!, and~35! into Eq. ~38! yields
the initial magnetization, normalized to the saturation ma
netizationMs5RJc/3 for a50:

Mz

Ms
52

2

pR3 Fa~b22a2!tanh21S a

b
AR22b2

R22a2D
1~R22a2!3/2cos21~b/R!1bA~R22a2!~R22b2!G

[Mzi~a,b!/Ms ~39!

Equation ~39! yields the initial magnetizationMz as a
function of the flux-front radiusb for fixed currentI ~fixed
a). To obtainMz vs the applied fieldBa , one needs only to
make use of Eq.~25!, which can be solved to obtainb as a
function ofBa . It can be shown that when there is no rad
current I (a50), the magnetization reduces to the resu
given in Refs. 9,10, and 13. It also can be shown that
slope of the initial magnetization atBa50 is independent of
a and behaves as

Mz

Ms
52

4

p

Ba

Bd
,

Ba

Bd
!1, ~40!

the same as the behavior of a disk with perfect screenin10

Equation~39! holds only for the first stage of initial flux
penetration, i.e., only forbm,b,R and 0,Ba,Bam . The
sudden entry of magnetic flux that occurs during the sec
stage of flux penetration whenb5bm andBa5Bam leads to
a jump in the magnetization. During the third stage of fl
penetration, the current density is given by Eqs.~36! and
~37!, and the corresponding normalized magnetization
tained from Eq.~18! or Eq. ~38! is
7-7
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Mz /Ms52~12a2/R2!3/2, ~41!

the negative of that given in Eq.~19!.
Shown in Fig. 7 are plots of the magnetizationMz ~nor-

malized toMs) vs applied fieldBa ~normalized toBd) for
the initial penetration of magnetic flux into a curren
carrying Corbino disk for several values ofa. Note the jumps
in magnetization occurring atBam . Increasing the radial cur
rent I ~i.e., increasinga) decreases the magnitude ofMz ,
which is always less thanMs .

IV. ac PROPERTIES

We next calculate the current-density and flux-dens
profiles produced when a perpendicular applied field os
lates between1h0 and 2h0, restricting our attention to
stage-1 flux penetration, in which disk’s center remains
the Meissner state. We begin with the profiles for which
applied magnetic induction along the1z direction has in-
creased monotonically from zero toBa51b051m0h0. The
corresponding initial flux-front radiusb can be obtained, a
in Sec. III, by solving Eq.~25! with Ba5b0. We next inves-
tigate what happens when the applied magnetic inductio
monotonically decreased from1b0 to a value in the range
2b0<Ba<1b0. We may calculate the resulting curre
density using the procedure explained in Refs. 13 and
When Ba51b0, the azimuthal current density isJf

52JcA12a2/r2 in the regionb<r<R, as in Eq. ~35!.
However, asBa decreases, the current density changes s
and takes on the valueJf51JcA12a2/r2 in the annular
region c<r<R, where b<c<R. As Ba decreases, the
magnetic-flux densityBz(r,0) remains unchanged through
out the region 0<r<c. Using an argument similar to tha
used in Refs. 13 and 10, we find that the current den
while Ba is decreasing is

Jf~r;b,c!5Jf~r;b!22Jf~r;c!, ~42!

FIG. 7. MagnetizationMz , normalized toMs5JcR/3, vs in-
creasing applied magnetic inductionBa , normalized toBd5m0Hd

5m0Jcd/2, for initial penetration of magnetic flux into the Corbin
disk for three different radial currentsI, corresponding toa/R50.4,
0.6, and 0.8, calculated from Eqs.~39! and ~41!.
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where the functionJf(r;b) is defined in Eqs.~33!, ~34!, and
~35!, and the ac penetration radiusc remains to be deter
mined. The corresponding magnetic flux density in the pla
of the disk is found to be

Bz~r,0;b,c!5Bz~r,0;b!22Bz~r,0;c!, ~43!

where the terms on the right-hand side of this equation
calculated from Eq.~30! with the help of Eqs.~33!, ~34!, and
~35!.

The inner radiusc of the annular region in whichJf

51JcA12a2/r2, together with the results given in Eq
~42! and~43!, is obtained with the help of a weight function
which can be derived by a method similar to that used in S
III:

b02Ba

2Bd
5tanh21AR22c2

R22a2
2

a

c
tanh21S a

c
AR22c2

R22a2D .

~44!

Note that Eq.~44! could have been obtained from Eq.~25!
simply by replacingBa by b02Ba , Bd by 2Bd , andb by c.
Note also from Eqs.~44! and ~25! that c5R when Ba5b0
andc5b whenBa52b0.

Shown in Fig. 8 are profiles of~a! the azimuthal current
densityJf(r) @Eqs.~42!, ~33!, ~34!, ~35!, ~25!, and~44!# and
~b! the magnetic flux densityBz(r,0) @Eq. ~43!# vs r under
ac conditions for the field-decreasing half cycle as the
plied magnetic inductionBa decreases from1b051.5Bd to
2b0521.5Bd for radial current I corresponding toa/R
50.2.

For the field-increasing half cycle (Ba increasing from
2b0 to 1b0), it is straightforward to show that

Jf~r;b,c8!52Jf~r;b!12Jf~r;c8!, ~45!

where Jf(r;b) is given by Eqs.~33!, ~34!, ~35!, and ~25!
with Ba51b0. Following a derivation similar to that leadin
to Eq. ~44!, we find thatc8 is determined from

b01Ba

2Bd
5tanh21AR22c82

R22a2
2

a

c8
tanh21S a

c8
AR22c82

R22a2 D .

~46!

For Ba increasing,c85R whenBa52b0, andc85b when
Ba51b0. The corresponding magnetic flux density in th
plane of the disk is found to be

Bz~r,0;b,c8!52Bz~r,0;b!12Bz~r,0;c8!, ~47!

where the terms on the right-hand side of this equation
calculated from Eq.~30! with the help of Eqs.~33!, ~34!, and
~35!.

We next show how to calculate the hysteretic magneti
tion of a current-carrying Corbino disk subjected to a perp
dicular ac applied magnetic field, again restricting our att
tion to stage-1 flux penetration, in which disk’s cent
remains in the Meissner state. Here, since the external m
netic field is applied along the1z direction, the magnetic
moment has only az component, given by Eq.~38!. In Sec.
III, we considered a current-carrying Corbino disk in th
7-8
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Meissner state and calculated its initial magnetization, wh
we denoted byMzi(a,b) @Eq. ~39!#. Suppose that the applie
magnetic inductionBa has been increased to the value1b0
and is now decreased from1b0 to 2b0. We may use the
results of Sec. III to obtain the decreasing-field magneti
tion, denoted byMz↓(a,b,c), by substituting Eq.~42! into
Eq. ~38! and carrying out a calculation similar to that used
deriving Eq.~39!. The resulting normalized field-decreasin
magnetizationMz↓ is

Mz↓~a,b,c!/Ms5Mzi~a,b!/Ms22Mzi~a,c!/Ms ,
~48!

where the normalized initial magnetizationMzi(a,b)/Ms is
given by Eq.~39!, a is given by Eq.~9!, b is given by Eq.
~25! with Ba51b0, andc is given by Eq.~44!.

FIG. 8. ~a! Profiles of the current densityJf(r), normalized to
the critical current densityJc , vs the reduced radial coordinater/R
for a Corbino disk of radiusR carrying a radial transport currentI,
parametrized bya/R5I /2pRJcd50.2, as the normalized applie
ac magnetic fieldBa /Bd is decreased fromb0 /Bd511.5 to
2b0 /Bd521.5: Ba /Bd5 ~a! 1.5, ~b! 1.0, ~c! 0.5, ~d! 0.0, ~e!
20.5, ~f! 21.0, and~g! 21.5. The azimuthal current densities a
calculated from Eq.~42!, and the flux-front radiusb and ac penetra-
tion radius c are given by Eqs.~25! and ~44!, respectively.
~b! Corresponding flux-density profilesBz(r,0)/Bd , calculated
from Eq. ~43!.
18450
h

-

Similarly, when the applied magnetic induction is in
creased from2b0 to 1b0, the reduced increasing-field mag
netizationMz↑ is

Mz↑~a,b,c8!/Ms52Mzi~a,b!/Ms12Mzi~a,c8!/Ms ,
~49!

wherec8 is given by Eq.~46!.
Figure 9 shows plots of the magnetization hysteresis lo

calculated from Eqs.~48! and ~49! for four values ofb0
5m0h0 but the same value of the transport current para
etrized bya/R5I /2pRJcd50.2. The curve beginning at th
origin is the initial magnetization, Eq.~39!.

V. SUMMARY

In this paper, we have used the critical-state model
analyze the magnetization of a thin, superconducting curr
carrying Corbino disk of radiusR and thicknessd subjected
to a perpendicular magnetic field. We first considered, in S
II, a disk carrying no radial current but containing remane
magnetic flux in zero applied magnetic field. We found th
when a radial currentI is then applied to the Corbino disk
the disk’s central region~radiusa5I /2pJcd) becomes resis-
tive, rendering it unable to sustain azimuthal persistent c
rents there, such that some of the trapped flux is expel
When the radial current density reachesJc at the outer radius
R of the disk, all the trapped flux is expelled.

We next considered, in Sec. III, a disk initially in th
Meissner state and carrying a radial current, but contain
no trapped magnetic flux in zero applied magnetic field.

FIG. 9. Normalized magnetizationMz /Ms vs reduced applied
magnetic fieldBa /Bd for a superconducting Corbino disk carryin
radial current I parametrized bya/R5I /2pRJcd50.2. Curve a
shows the initial magnetization@Eq. ~39!#, starting from the zero-
field-cooled state. The remaining curves show magnetization h
teresis loops@Eqs. ~48! and ~49!# when Ba5m0Ha is cycled be-
tween1b0 and2b0 for b0 /Bd5 ~b! 0.75, ~c! 1.00, ~d! 1.25, and
~e! 1.50.
7-9
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calculate the profiles of the azimuthal current density and
perpendicular component of the magnetic-flux density wh
a perpendicular magnetic field is first applied, we applie
method first introduced by Shantsevet al.7,8 for another pur-
pose. We found that magnetic-flux penetration into the d
occurs in three stages. In the first stage, magnetic flux gra
ally penetrates up to a flux-front radiusb, while the disk’s
interior (r,b) remains in the Meissner state. In the seco
stage, initiated by an instability, magnetic flux sudden
rushes into the disk’s interior, making the central region
the disk (r,a) resistive and unable to carry persistent a
muthal currents. In the third stage, the magnetic flux dis
bution is describable as the sum of the externally app
magnetic inductionBa and the Biot-Savart-derived magnet
field generated by an azimuthal critical current density flo
ing in an annulus of inner radiusa and outer radiusR. Using
the analytic results obtained in this section, we then ca
lated the initial magnetization of the disk.

In Sec. IV, we calculated sequences of profiles of the a
muthal current density and the perpendicular componen
L.
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the magnetic-flux density when a perpendicular ac magn
field is applied to a current-carrying Corbino disk initially i
the Meissner state. We restricted our attention to field am
tudes corresponding to the first stage of flux penetrati
such that the disk’s interior remains in the Meissner sta
Using the analytic results from this section, we then cal
lated magnetization hysteresis loops for the Corbino disk

We hope that this paper will stimulate experimental inve
tigations of the phenomena predicted here.
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